什麼是磁滯回線有什麼應用技巧

  磁滯回線表示磁場強度週期性變化時,強磁性物質磁滯現象的閉合磁化曲線,那麼你對磁滯回線瞭解多少呢?以下是由小編整理關於什麼是磁滯回線,希望大家喜歡!

  磁滯回線的基本概念

  物理過程

  將強磁性材料***包括鐵磁性和亞鐵磁性材料***樣品從剩餘磁化強度M=0開始,逐漸增大磁化場的磁場強度H,磁化強度M將隨之沿圖1中OAB曲線增加,直至到達磁飽和狀態B。現增大H,樣品的磁化狀態將基本保持不變,因此直線段BC幾乎與H軸平行。當磁化強度到達飽和值Ms時,對應的磁場強度H用Hs表示。OAB曲線稱為起始磁化曲線。

  此後若減小磁化場,磁化曲線從B點開始並不沿原來的起始磁化曲線返回,這表明磁化強度M的變化滯後於H的變化,這種現象稱為磁滯。當H減小為零時,M並不為零,而等於剩餘磁化強度Mr。要使M減到零,必須加一反向磁化場,而當反向磁化場加強到-Hcm時,M才為零,Hcm稱為矯頑力。

  如果反向磁化場的大小繼續增大到-Hs時,樣品將沿反方向磁化到達飽和狀態E,相應的磁化強度飽和值為-Ms。E點和B點相對於原點對稱。

  此後若使反向磁化場減小到零,然後又沿正方向增加。樣品磁化狀態將沿曲線EGKB回到正向飽和磁化狀態B。EGKB曲線與BNDE曲線也相對於原點O對稱。由此看出,當磁化場由Hs變到-Hs,再從-Hs變到Hs反覆變化時,樣品的磁化狀態變化經歷著由BNDEGKB閉合回線描述的迴圈過程。曲線BNDEGKB稱為磁滯回線。

  BC及EF兩段相應於可逆磁化過程,M為H的單值函式。由於磁滯現象,磁滯回線上任一給定的H,對應有兩個M值。樣品處於哪個磁狀態,決定於樣品的磁化歷史。可以證明,B-H磁滯回線所包圍的面積正比於在一次迴圈磁化中的能量損耗。

  正常磁化曲線

  若磁化場的最大|H|值在小於|Hs|的範圍內反覆磁化,將得到小一些的磁滯回線***見圖2***。所有磁滯回線中上述BNDEGKB為最大的一個,常稱為極限磁滯回線。各磁滯回線兩端頂點的連線稱為正常磁化曲線,如圖2中虛線所示,它和起始磁化曲線基本重合。

  用B-H表示的強磁性材料的磁滯回線其走向和形狀與M-H磁滯回線大致相同。在電工技術中更多使用B-H表示的磁滯回線。

  上述磁滯回線是在磁場作緩慢變化時得到的,也稱為準靜態磁滯回線。在交變磁場作用時,仍然有磁滯現象,磁滯回線也是一閉合回線,稱為動態磁滯回線。由於渦流效應等影響,動態磁滯曲線的形狀和麵積大小等都與準靜態磁滯回線的不同。

  可以證明,B-H磁滯回線所包圍的面積正比於在一次迴圈磁化中的能量損耗。對準靜態磁滯回線,此損耗僅為磁滯損耗,對於動態磁滯回線,此能量損耗包括磁滯損耗和渦流損耗等。

  矯頑力

  當H=-Hc時, B=0***B≈μ0***H+M*** ,所以此時M≈0***,這說明使鐵磁質完全消除剩磁需加反向磁場Hc,Hc稱為矯頑力。因為H=B/μ0-M,嚴格地說使B=0與使M=0所需的矯頑力不一樣,應當區分使M=0與使B=0的矯頑力。

  在矯頑力不大時***即在H≪M時,B=μ0***H+M***≃μ0M***認為二者矯頑力一致***即B=0時M=0***。矯頑力的大小反映了鐵磁材料儲存剩磁狀態的能力。正是按矯頑力的大小把鐵磁質分成硬磁材料和軟磁材料。

  磁滯回線的分類

  磁滯回線一般可分為下面幾種型別:

  ***1***正常磁滯回線。 這是絕大多數磁性材料所具有的回線形狀與原點是對稱的,或稱S型回線。

  ***2***矩形磁滯回線,指Br/Bm>0.8的磁滯回線,這一般可以用熱處理或脅強處理材料的方法來得到。

  ***3***退化磁滯回線。 若某種材料經過磁場熱處理或脅強處理後在一定方向獲得了矩形磁滯回線,若當在其垂直方向進行磁化的,常常會得到近於直線的磁滯回線,Br/Bs<0.2。

  ***4***蜂腰磁滯回線。在少數磁性材料中,例如某些含鈷的鐵氧體和叵明伐***perminvar***合金,在中等磁場強度下的磁滯回線呈現特殊的形狀,即在Br附近的B值顯著降低形如蜂腰。

  ***5***不對稱磁滯回線。前面4種都稱為對稱回線***Hc=Hc***。而對同時含有鐵磁性和反鐵磁性成分的材料***例如粉末狀鈷表面有氧化鈷層***,或者在恆定磁場中經過熱處理的鐵氧體,其磁滯回線常出現不對稱,即Hc≠Hc。

  ***6***飽和磁滯回線。當磁化場足夠大,使磁化達到飽和狀態,這樣得到的正常磁滯回線即為飽和磁滯回線。通常在這一狀態下定義Hc和Br的大小。

  磁滯回線的應用

  磁滯回線具有結構靈敏的性質,很容易受各種因素的影響。 磁滯回線的產生則是由於技術磁化中的不可逆過程引起的,這種不可逆過程在疇壁移動和磁疇轉動的過程中都可能發生。磁滯回線所包圍的面積,表示鐵磁物質磁化迴圈一週所需消耗的能量,這部分能量往往轉化為熱能而被消耗掉。

  磁滯回線反映了鐵磁質的磁化效能。它說明鐵磁質的磁化是比較複雜的,鐵磁質的M、B和H之間的關係不僅不是線性的,而且不是單值的。亦即對於一個確定的H,M、B的值不能唯一確定,同時還與磁化歷史有關。

  不同的鐵磁質有不同形狀的磁滯回線,不同形狀的磁滯回線有不同的應用。例如永磁材料要求矯頑力大,剩磁大;軟磁材料要求矯頑力小;記憶元件中的鐵心則要求適當低的矯頑力。為了滿足生產、科研中新技術的需要就要研製新的鐵磁材料使它們的磁滯回線符合應用的要求。磁滯回線為選材提供了依據。由於B—H磁滯回線所圍面積與磁滯損耗成正比,在交流電器中磁滯損耗是有害的,它的存在既浪費了電能又使鐵心發熱,對裝置不利,所以軟磁材料的磁滯回線所圍面積要儘量減小,以減少損耗。

  磁滯回線的用途

  在外加磁場中,處於退磁狀態的磁性材料的磁感應強度,將隨外加磁場沿O→①變化,直到達到飽和狀態三如將這時的外加磁場減小為0,磁感應強度將沿曲線①→②達到②點,在②點,材料仍將保留一部分磁感應強度,稱為剩餘磁感應強度或剩磁。這時如施加反向磁化場,磁感應強度將沿曲線②→③→④變化,④為反向飽和狀態。

  在③點,材料的磁感應強度為零,所對應的外加磁化場強度稱為材料的矯頑力。減小反向磁化場並進一步施加正向磁化場,磁感應強度將沿曲線④→⑤→⑥→①變化,形成閉合的磁滯回線①→②→③→④→⑤→⑥→①。當外加磁化場小於飽和磁化場***如圖所示的H′***時,根據外加磁化場的大小和方向的不同,材料的磁感應強度將沿曲線O→⑦或O→⑨變化,外加磁化場減小為零時得到的剩磁將分別為O→⑧和O→⑩,描述剩磁隨外加磁化場之間關係的曲線稱為剩磁曲線。


磁滯回線如何應用