地球起源和演化

  固體地球形成至今,在46億年的漫長演變史中,經歷了地球化學動力演化、大氣成分的演化、海陸變遷及生命的演化,形成今日的地球。這些變化,有些是逐漸發生的,有些是突然發生的。下面小編帶你去看看地球系統演化。

  地球起源

  太陽系的形成

  關於太陽系的形成,一類認為太陽系是一次激烈的偶然突變而產生的,即災變說觀點;另一類則認為太陽系是有條不紊地逐漸演變成的,即演化說觀點。

  1755年,德國哲學家康德根據牛頓的萬有引力原理,提出一個太陽系形成的假說,認為太陽系中的太陽、行星和衛星等是由星雲——一種稀薄的雲霧狀微粒物質逐漸演化形成的。1796年,法國天文學家拉普拉斯也提出了與康德類似的星雲說,後人常把兩者合起來,統稱“康德一拉普拉斯星雲說”。這個假說在19世紀的大部分時間內佔統治地位。

  星雲說認為:恆星的形成是銀河瀰漫的原始星雲的某一個球狀碎片,在自身引力的作用下不斷收縮,產生旋渦,旋渦使星雲碎裂成大量碎片,每個碎片又逐漸轉化為恆星。太陽就是其中之一,它也不斷收縮、旋轉,在長期的運動中形成原始太陽。周圍的物體不斷聚合、碰撞,越轉越大,就形成了今天的八大行星。行星周圍的物質,也是這樣漸漸形成了衛星。這就是太陽系形成的一個主要假說。

  唯心主義認為,地球和整個宇宙都是依神或上帝的意思創造出來的。18世紀愛爾蘭一個大主教公開宣稱:“地球是紀元前4004年10月23日一個星期天的上午9時整被上帝創造出來的。”在中國古代,人們認為遠古的時候還沒有天地,宇宙間只有一團氣,在一萬八千年前,有位盤古氏開天闢地,才有了日月星辰和大地。

  康德和拉普拉斯他們認為太陽系是由一個龐大的旋轉著的原始星雲形成的。原始星雲是由氣體和固體微粒組成,它在自身引力作用下不斷收縮。星雲體中的大部分物質聚整合質量很大的原始太陽。

  與此同時,環繞在原始太陽周圍的稀疏物質微粒旋轉的加快,便向原始太陽的赤道面集中,密度逐漸增大,在物質微粒間相互碰撞和吸引的作用下漸漸形成團快,大團快再吸引小團快就形成了行星。行星周圍的物質按同樣的過程形成了衛星。這就是康德——拉普拉斯星雲說。

  關於地球和太陽系起源還有許多假說,如碰撞說、潮汐說、大爆炸宇宙說等等。自20世紀50年代以來,這些假說受到越來越多的人質疑,星雲說又躍居統治地位。國內外的許多天文學家對地球和太陽系的起源不僅進行了一般理論上的定性分析,還定量地、較詳細論述了行星的形成過程,他們都認為地球和太陽系的起源是原始星雲演化的結果。

  中國天文學家戴文賽認為,在50億年之前,宇宙中有一個比太陽大幾倍的大星雲。這個大星雲一方面在萬有引力作用下逐漸收縮,另外在星雲內部出現許多湍渦流。於是大星雲逐漸碎裂為許多小星雲,其中之一就是太陽系前身,稱之為“原始星雲”,也叫“太陽星雲”。由於原始星雲是在湍渦流中形成的,因此它一開始就不停地旋轉。

  原始星雲在萬有引力作用下繼續收縮,同時旋轉加快,形狀變得越來越扁,逐漸在赤道面上形成一個“星雲盤”。組成星雲盤的物質可分為“土物質”、“水物質”、“氣物質”。這些物質在萬有引力作用下,又不斷收縮和聚集,形成許多“星子”。星子又不斷吸積、吞併,中心部分形成原始太陽,在原始太陽周圍形成了“行星胎”。原始太陽和行星胎進一步演化,而形成太陽和九大行星,進而形成整個太陽系。

  地球的形成

  對的問題進行系統的科學研究始於十八世紀中葉,至今已經提出過多種學說。一般認為地球作為一個行星,起源於46億年以前的原始太陽星雲。地球和其他行星一樣,經歷了吸積、碰撞這樣一些共同的物理演化過程。

  形成原始地球的物質主要是星雲盤的原始物質,其組成主要是氫和氦,它們約佔總質量的98%。此外,還有固體塵埃和太陽早期收縮演化階段丟擲的物質。在地球的形成過程中,由於物質的分化作用,不斷有輕物質隨氫和氦等揮發性物質分離出來,並被太陽光壓和太陽丟擲的物質帶到太陽系的外部,因此,只有重物質或土物質凝聚起來逐漸形成了原始的地球,並演化為今天的地球。水星、金星和火星與地球一樣,由於距離太陽較近,可能有類似的形成方式,它們保留了較多的重物質;而木星、土星等外行星,由於離太陽較遠,至今還保留著較多的輕物質。關於形成原始地球的方式,儘管還存在很大的推測性,但大部分研究者的看法與戴文賽先生的結論一致,即在上述星雲盤形成之後,由於引力的作用和引力的不穩定性,星雲盤內的物質,包括塵埃層,因碰撞吸積,形成許多原小行星或稱為星子,又經過逐漸演化,聚成行星,地球亦就在其中誕生了。根據估計,地球的形成所需時間約為1千萬年至1億年,離太陽較近的行星***類地行星***,形成時間較短,離太陽越遠的行星,形成時間越長,甚至可達數億年。

  地球早期的演化

  形成初期的化學性變化

  至於原始的地球到底是高溫的還是低溫的,科學家們也有不同的說法。從古老的地球起源學說出發,大多數人曾相信地球起初是一個熔融體,經過幾十億年的地質演化歷程,至今地球仍保持著它的熱量。現代研究的結果比較傾向地球低溫起源的學說。地球的早期狀態究竟是高溫的還是低溫的,目前還存在著爭論。然而無論是高溫起源說還是低溫起源說,地球總體上經歷了一個由熱變冷的階段,由於地球內部又含有熱源,因此這種變冷過程是極其緩慢的,地球仍處於繼續變冷的過程中。

  地球在剛形成時,溫度比較低,並無分層結構,後來由於隕石等物質的轟擊、放射性衰變致熱和原始地球的重力收縮,才使地球的溫度逐漸升高,最後成為粘稠的熔融狀態。在熾熱的火球旋轉和重力作用下,地球內部的物質開始分異。較重的物質漸漸地聚集到地球的中心部位,形成地核;較輕的物質則懸浮於地球的表層,形成地殼;介於兩者之間的物質則構成了地幔。這樣就具備了所謂的層圈結構。

  在地球演化早期,原始大氣都逃逸了。但隨著物質的重新組合和分化,原先在地球內部的各種氣體上升到地表成為新的大氣層。由於地球內部溫度的升高,使內部結晶水汽化。後來隨著地表溫度的逐漸下降,氣態水經過凝結,積聚到一定程度後,又通過降雨重新落到地面,這種情況持續了很長一段時間,於是在地面上形成水圈。

  最原始的地殼約在40億年前出現,而地球以其地殼出現作為界線,地殼出現之前稱為天文時期,地殼出現之後則進入地質時期。

  陸地的起源

  有關大陸的起源問題,地質和地球物理學家杜托特***A. L. Du Toit***於1937年在他的《我們漂移的大陸》一書中提出了地球上曾存在兩個原始大陸的模式。如果這個模式成立,那麼這兩個原始大陸分別被稱為勞亞古陸***Lanrasia***和岡瓦納古陸***Gondwanaland***;這實際上就象以前魏格納等人所主張的那樣,把全球大陸只拼合為一個古大陸。杜托特認為,兩個原始大陸原來是在靠近地球兩極處形成的,其中勞亞古陸在北,岡瓦納古陸在南,在它們形成以後,便逐漸發生破裂,並漂移到今天大陸塊體的位置。

  早在19世紀末,地質家學休斯***E. Suess***已認識到地球南半球各大陸的地質構造非常相似,並將其合併成一個古大陸進行研究,並稱其為岡瓦納古陸,這個名稱源於印度東中部的一個標準地層區名稱***Gondwana***。岡瓦納古陸包括現今的南美洲、非洲、馬達加斯加島、阿拉伯半島、印度半島、斯里蘭卡島、南極洲、澳大利亞和紐西蘭。它們均形成於相同的地質年代,岩層中都存在同種的植物化石,被稱為岡瓦納岩石。杜托特用以證明勞亞古陸和岡瓦納古陸的存在和漂移的主要證據,是來自地質學、古生物學和古氣候學方面。根據三十多年中積累起來的資料,有力地證明岡瓦納古陸的理論基本上是正確的。

  勞亞古陸是歐洲、亞洲和北美洲的結合體,這些陸塊即使在現在還沒有離散得很遠。勞亞古陸有著很複雜的形成和演化歷史,它主要由幾個古老的陸塊合併而成,其中包括古北美陸塊、古歐洲陸塊、古西伯利亞陸塊和古中國陸塊。在晚古生代***距今約3億年前***這些古陸塊逐步靠擾並碰撞,大致在石炭紀早中期至二疊紀***即2億至2億7千萬年前***才逐步閉合。古地質、古氣候和古生物資料表明,勞亞古陸在石炭~二疊紀時期位於中、低緯度帶。在中生代以後***即最近的1-2億年間***勞亞大陸又逐步破裂解體,從而導致北大西洋擴張形成。研究表明,全球新的造山地帶的形成和分佈,都是勞亞古陸和岡瓦納古陸破裂和漂移的構造結果。在這過程中,大陸巖塊的不均勻向西運動和離極運動的規律十分明顯。總的看來,勞亞古陸曾位於北半球的中高緯度帶,岡瓦納古陸則曾一度位於南半球的南極附近;這兩個大陸之間由被稱為古地中海***也稱為特提斯地槽***的區域所分隔開。

  在杜托特***1937年***提出勞亞古陸與岡瓦納古陸理論之前,魏格納***A.L.Wegener***早在1912年曾提出了地球上曾只有一個原始大陸存在的理論,稱為聯合古陸。魏格納認為,它是在石炭紀時期***距今約2.2億-2.7億年前***形成的。魏格納把聯合古陸作為他描述大陸漂移的出發點。然而根據人們現在的認識,魏格納所提出的聯合古陸決不是一個原始的大陸。雖然仍有很大一部分人贊同聯合古陸觀點,但他們所作出的古大陸復原圖與魏格納所提出的復原圖相比,已存在很大的差別,相反倒有些接近杜托特的兩個古大陸分佈的理論。

  最近2億年以來的大陸漂移和板塊運動,已得到了確切證明和廣泛的承認。然而有人推測,板塊運動很可能早在30億年前就已經開始了,而且不同地質時期的板塊運動速度是不同的,大陸之間曾屢次碰撞和拼合,以及反覆破裂和分離。大陸巖塊的多次碰撞形成了褶皺山脈,並連線在一起形成新的大陸,而由大洋底擴張形成新的大洋盆地。因此,要準確復原出大陸在2億多年前所謂的"漂移前的漂移"是十分困難的。地球的年齡已有46億年曆史,目前已經知道地球上最古老的岩石年齡為43.74億年 ,並且分佈的面積相當小。這樣,從46億年到37億年間,約有9億年的間隔完全缺失地質資料。此外,地球上25億年前的地質記錄也非常有限,這對研究地球早期的歷史狀況帶來不少困難。

  大洋的起源與演化

  有關大洋的起源和演化研究從本世紀初才開始,在此之前一般認為大洋盆地是地球表面上永存的形態,也即大洋盆地自從貯水形成以來,其位置和分佈格局是固定的。隨著地球科學的發展,特別是本世紀初以魏格納為首的大陸漂移這一革命性的學說的提出,對自最近的2億多年以來大洋的起源和演化有了突破性的認識。

  對於大陸漂移學說,並非一開始就得到許多人支援的,因為當時對引起大陸漂移的機制,即力源問題並沒有很好解決。1931年,霍姆斯等人提出了地幔對流學說,用於解釋大陸漂移的力源,然而這個觀點在當時很少受到人們的注意。19世紀後期,有人建立了地球收縮的全球構造學說,用於解釋地球上為什麼會有如此大規模的造山運動。然而,本世紀50年代以後,隨著全球性大洋中裂谷的巨大拉張性證據的發現,收縮學說被普遍放棄了,與此同時,地球膨脹學說很快流行起來。膨脹說認為,地球開始時很小,直徑是現今地球的一半。由於地球大幅度膨脹,原始地殼裂開成為現在的大陸,裂開的地方經過不斷髮展成為現代的大洋盆地。並且,由於地球的大幅度膨脹引起的所謂大陸漂移,表明大陸塊基本上是停留在原地的,即各大陸之間和大陸相對於地幔之間並沒有發生過顯著的移動。由於膨脹說無法解釋大陸地殼上廣泛發育的褶皺山脈構造特徵是怎麼形成的,霍姆斯等人的地幔對流說很快再次被重視。60年代初,隨著洋底探測資料的迅速積累,赫斯***H. H. Hess***和迪茨***R. S. Dietz***首先把地幔對流方案發展為海底擴張的學說。赫斯在1962年發表了《大洋盆地的歷史》一文,提出了大洋起源的新觀點,即海底擴張理論。赫斯認為洋底的主要構造就是由地幔對流作用的直接表現。海底擴張理論證明,大陸和洋底是在對流著的地幔上被動地移動著,而不像早期的大陸漂移說所主張的大陸在洋底上主動漂移。海底擴張理論提出後不久,一些別的洋底觀測結果,諸如洋底地殼構造、地磁、地震震源和地熱流量分佈等對這個理論提供了有力證據。這種情況下,使得大部分的學者都轉向了關於海底擴張的研究。現在已經普遍確認,可以用海底擴張和板塊運動理論解釋大洋起源和演化,大洋盆地的固定論看來是過時了。海底擴張和板塊構造學說對大洋的起源和演化的理論解釋的基礎都是地幔對流說。

  現代研究證實,大洋最初是在大陸內部孕育的,並開始於大陸岩石圈中的裂谷。大陸在裂谷處破裂並相互分離,從而開始產生新的大洋盆地。魏格納曾把南大西洋兩對岸的吻合作為闡述大陸漂移說的出發點。事實上,把南美洲與非洲兩大陸拼合到一起,不僅大陸邊沿地形輪廓非常吻合,而且岩石型別和地質構造也可以對接起來。現已證明,大西洋在二疊紀***2億5千萬年前***時還根本不存在,據估計,形成中大西洋的大陸裂谷發生在稍後的三疊紀***約1億6千萬-1億9千萬年前***。至侏羅紀末期***約1億2千萬年前***,中大西洋可能已張開達1000公里的寬度;南大西洋的張開大約開始於早白堊紀***約1億1千萬年前***,而最初的裂谷發生在晚侏羅紀***約1億3千萬年前***;北大西洋張開最晚,大約開始於第三紀初***約6000-7000萬年前***,與此同時,由北大西洋裂谷向東北延展而伸入格陵蘭與歐洲之間,挪威海隨之張裂開。從6千萬年到2千萬年前,挪威海、巴芬海和北大西洋主體都在擴張,但速率和方向均有些變化。綜上所述,現今的那些廣闊的大洋盆地並不是從來如此,而是長期的地球運動和演化的結果。大洋由狹窄海灣到寬闊盆地的發展,是通過持續發生的大規模海底擴張過程實現的。海底擴張和板塊運動的動力都是地幔對流。

  由於地球原始地殼自從形成以來,從來沒有停止過大規模的地質構造形態的運動。因此,可以肯定地說,現在地球上大洋和陸地的形態就是過去數拾億年來大規模地殼運動的結果。