地球形成的過程

  太陽爆發給予生命在早期地球上形成所需的正確材料,那麼你知道地球是怎麼形成的嗎?小編在此整理了,供大家參閱,希望大家在閱讀過程中有所收穫!

  

  地球已經是一個46億歲的老壽星了,她起源於原始太陽星雲。約在30—40億年前,地球已經開始出現最原始的單細胞生命,後來逐漸進化,出現了各種不同的生物。地球的平均赤道半徑為6378.14公里,比極半徑長21公里。

  地球的內部結構可以分為三層:地殼、地幔和地核。在地球引力的作用下,大量氣體聚集在地球周圍,形成包層,這就是地球大氣層。 地球就像一隻陀螺,沿著自轉軸自西向東不停地旋轉著。她的自轉週期為23小時56分4秒,約等於24小時。 同時,地球還圍繞太陽公轉,她的公轉軌道是橢圓形,軌道的半長徑達到149,597,870公里。 公轉一週要365.25天,為一年。

  太陽系在大約50億年前誕生後,大約過了5億年,地球開始形成。地球是由原始的太陽星雲分餾、坍縮、凝聚而形成的。 首先,星子聚整合行星胎,然後再增生而形成原始地球。

  原始地球所獲得的星子是比較冷的,但是每個落到原始地球上的星子都有很高的運動能量,這種能量因衝擊轉化為熱能;另外,由於星子的堆積使地球行星外部重量增加,內部受壓縮,消耗在壓縮內部的能量轉化為熱被儲存下來;再加上放射性元素鈾、釷、鉀等的衰變產生的熱積累,地球開始變熱,並最終導致大部分地區溫度超過鐵的熔點。原始地球中的金屬鐵、鎳及硫化鐵熔化,並因密度大而流向地球的中心部位,從而形成液態鐵質地核。

  隨後,地球的平均溫度進一步上升,引起地球內部大部分物質熔融,比母質輕的熔融物質向上浮動,把熱帶到地表,經冷卻後又向下沉沒,這種對流作用控制下的物質 移動,使原始地球產生全球性的分異,演化成分層的地球,即中心為鐵質地核,表層為低熔點的較輕物質組成的最原始的陸核,陸核進一步增生、擴大形成地殼。地核與地殼之間為地幔。分異作用是地球內部最重要的作用,它導致了地殼及大陸的形成,並導致大氣和海洋的形成。

  氫和氧結合成的水,原先潛藏於一些礦物中。當原始地球變熱並部分熔融時,水釋放出來並隨熔岩運移到地表,大部分以蒸氣狀態逸散,其餘部分在漫長的地質歷史程序中逐漸充滿大洋。在原始地球變熱而產生分異作用的過程中,從地球內部釋放出來的氣體形成了大氣圈。早期地球的大氣圈成分與現代不同,正是由於紫外輻射的能量促使原始大氣成分之間發生反應,從無機物質生成有機小分子,然後發展成有機高分子物質組成的多分子體系,再演變成細胞,生命得以開始和進化。

  經過早期分異階段,地幔固結,原始地殼和大陸發育,並形成了大洋和大氣圈。

  地核和地幔的變化對地球磁場的變化起主導作用。地質構造演化,板塊的形成與運動,以及地震、火山等自然現象說明,地球內部處於熱學和力學不平衡的狀態,存在巨大的力源,使運動持續不停。 地核的兩個可測的物理特性是磁場和熱量。地核通過兩個重要的直接途徑對地幔產生影響,一是向地幔底部提供熱量,激勵地幔深處的熱對流,即熱的輸出是通過傳導與對流;二是對地幔施加一種機械的轉矩,這種相互機械作用和包括大氣運動等在內的其他地球過程,決定了一天的長短變化和地球轉軸在空間的定向。

  地幔對流是發生在地幔中的一種熱方式,也是一種地幔物質的運動過程。地幔中的這種熱對流作用是地球內部向地球表面輸送能量、動量和質量的有效途徑,很可能就是地球演化的驅動力。

  地球的最上層是厚約100公里的堅硬岩石層,稱為岩石圈,它包括地殼和上地幔的頂部。岩石圈下面是上地幔的低速層,其物質少部分是熔化的,但固體介質長期處在高溫高壓環境中會具有流變特徵,整個低速層便可以發生流動變形,故稱為軟流圈,其下界深約220公里。岩石圈不是一個整體,而是被構造活動帶割裂的、持續不斷地相對運動著的若干剛性板塊。最早曾將全球岩石圈分為6個大板塊:歐亞板塊、美洲板塊、非洲板塊、太平洋板塊、印澳板塊和南極板塊。這些板塊的邊界並非大陸邊緣,而是海嶺、島弧構造和水平斷裂。除太平洋板塊完全是水域外,其餘都是海陸兼有。絕大部分的地震和火山發生在板塊邊界處。板塊構造對大陸陸塊的聯結和分離,對生物物種的遷移和進化具有重要意義。

  板塊大地構造學說認為:地球上層的大地構造運動和地震活動主要是這些板塊相互作用的結果。板塊變形主要發生在它們的邊界部位,板內變形主要是大範圍的造山運動。地球表面有環太平洋地震帶、歐亞地震帶以及大西洋中一條很長的弱地震帶,這些地震帶正是板塊的邊界。

  美洲、非洲、歐洲和格陵蘭在2億年前的很長時間裡都是連在一起的,約在2億年前才開始分裂,後來擴張形成大西洋,這種過程叫做"離散";而印度板塊還只是"到了距今0·7—0·6億年前才漂移到亞洲附近,隨後與歐亞板塊產生相互碰撞。這種過程叫做"匯聚"。板塊會分離和碰撞,還會沿轉換斷層相互滑動,這是板塊構造理論的關鍵。 在板塊碰撞過程中,重的大洋岩石圈向較輕的大陸岩石圈之下的地幔中插進去,稱為"俯衝"。正是因為印度板塊的俯衝,使我國青藏高原在新生代隆起成為全球地殼厚度最大的、陸地上海拔高程最高的地區,對全球環境產生重大影響。

  由於板塊的匯聚和離散及其持續不斷的運動,給形成礦產造成了許多有利條件。在匯聚區,岩石圈俯衝到大陸或島弧下發生重熔,含礦溶液上湧。世界上許多硫化物礦床都與板塊匯聚有關。在島弧與大陸之間的邊緣海區,沉積物中含有大量的有機物,創造了生油條件,我國東海、黃海和南海就是這類地域。板塊的離散邊界是新海底產生的地方,海水侵入岩石裂隙,溶解地幔上湧的物質,產生熱水礦床。

  地球的大陸起源

  有關大陸的起源問題,地質和地球物理學家杜托特***A. L. Du Toit***於1937年在他的《我們漂移的大陸》一書中提出了地球上曾存在兩個原始大陸的模式。如果這個模式成立,那麼這兩個原始大陸分別被稱為勞亞古陸***Lanrasia***和岡瓦納古陸***Gondwanaland***;這實際上就象以前魏格納等人所主張的那樣,把全球大陸只拼合為一個古大陸。杜托特認為,兩個原始大陸原來是在靠近地球兩極處形成的,其中勞亞古陸在北,岡瓦納古陸在南,在它們形成以後,便逐漸發生破裂,並漂移到今天大陸塊體的位置。

  早在19世紀末,地質家學休斯***E. Suess***已認識到地球南半球各大陸的地質構造非常相似,並將其合併成一個古大陸進行研究,並稱其為岡瓦納古陸,這個名稱源於印度東中部的一個標準地層區名稱***Gondwana***。岡瓦納古陸包括現今的南美洲、非洲、馬達加斯加島、阿拉伯半島、印度半島、斯里蘭卡島、南極洲、澳大利亞和紐西蘭。它們均形成於相同的地質年代,岩層中都存在同種的植物化石,被稱為岡瓦納岩石。杜托特用以證明勞亞古陸和岡瓦納古陸的存在和漂移的主要證據,是來自地質學、古生物學和古氣候學方面。根據三十多年中積累起來的資料,有力地證明岡瓦納古陸的理論基本上是正確的。

  勞亞古陸是歐洲、亞洲和北美洲的結合體,這些陸塊即使在現在還沒有離散得很遠。勞亞古陸有著很複雜的形成和演化歷史,它主要由幾個古老的陸塊合併而成,其中包括古北美陸塊、古歐洲陸塊、古西伯利亞陸塊和古中國陸塊。在晚古生代***距今約3億年前***這些古陸塊逐步靠擾並碰撞,大致在石炭紀早中期至二疊紀***即2億至2億7千萬年前***才逐步閉合。古地質、古氣候和古生物資料表明,勞亞古陸在石炭~二疊紀時期位於中、低緯度帶。在中生代以後***即最近的1-2億年間***勞亞大陸又逐步破裂解體,從而導致北大西洋擴張形成。研究表明,全球新的造山地帶的形成和分佈,都是勞亞古陸和岡瓦納古陸破裂和漂移的構造結果。在這過程中,大陸巖塊的不均勻向西運動和離極運動的規律十分明顯。總的看來,勞亞古陸曾位於北半球的中高緯度帶,岡瓦納古陸則曾一度位於南半球的南極附近;這兩個大陸之間由被稱為古地中海***也稱為特提斯地槽***的區域所分隔開。

  在杜托特***1937年***提出勞亞古陸與岡瓦納古陸理論之前,魏格納***A.L.Wegener***早在1912年曾提出了地球上曾只有一個原始大陸存在的理論,稱為聯合古陸。魏格納認為,它是在石炭紀時期***距今約2.2億-2.7億年前***形成的。魏格納把聯合古陸作為他描述大陸漂移的出發點。然而根據人們現在的認識,魏格納所提出的聯合古陸決不是一個原始的大陸。雖然仍有很大一部分人贊同聯合古陸觀點,但他們所作出的古大陸復原圖與魏格納所提出的復原圖相比,已存在很大的差別,相反倒有些接近杜托特的兩個古大陸分佈的理論。

  最近2億年以來的大陸漂移和板塊運動,已得到了確切證明和廣泛的承認。然而有人推測,板塊運動很可能早在30億年前就已經開始了,而且不同地質時期的板塊運動速度是不同的,大陸之間曾屢次碰撞和拼合,以及反覆破裂和分離。大陸巖塊的多次碰撞形成了褶皺山脈,並連線在一起形成新的大陸,而由大洋底擴張形成新的大洋盆地。因此,要準確復原出大陸在2億多年前所謂的"漂移前的漂移"是十分困難的。地球的年齡已有46億年曆史,目前已經知道地球上最古老的岩石年齡為43.74億年[4] ,並且分佈的面積相當小。這樣,從46億年到37億年間,約有9億年的間隔完全缺失地質資料。此外,地球上25億年前的地質記錄也非常有限,這對研究地球早期的歷史狀況帶來不少困難。