斑翅山鶉

[拼音]:Yakebi hanglieshi

[外文]:Jacobian determinant

通常稱為雅可比式(Jacobian)。它是以n個n元函式

(1)

的偏導數

為元素的行列式

常記為

事實上,在(1)中函式都連續可微(即偏導數都連續)的前提之下,J就是函式組(1)的微分形式

的係數矩陣(即雅可比矩陣)的行列式。

若因變數u1,u2,…,un對自變數x1,x2,…,xn連續可微,而自變數x1,x2,…,xn對新變數r1,r2,…,rn連續可微,則因變數(u1,u2,…,un)也對新變數(r1,r2,…,rn)連續可微,並且

這可用行列式的乘法法則和偏導數的連鎖法則直接驗證。而公式(3)也類似於導數的連鎖法則。偏導數的連鎖法則也有類似的公式;例如,當(u,v)對(x,y,z)連續可微,而(x,y,z)對(r,s,t)連續可微時,便有

如果(3)中的r能回到u,

,則(3)給出

這時必須有

(4)

於是以此為係數行列式的聯立線性方程組 (2)中能夠把(dx1,dx2,…,dxn)解出來,作為(du1,du2,…,dun)的函式。而根據隱函式存在定理,在(u1,u2,…,un)對(x1,x2,…,xn)連續可微的前提下,只須條件(4)便足以保證(x1,x2,…,xn)也對(u1,u2,…,un)連續可微,因而(4)必然成立。這樣,連續可微函式組(1)便在雅可比行列式不等於零的條件(4)之下,在每一對相應點u=(u1,u2,…,un)與x =(x1,x2,…,xn)的鄰近範圍內建立起點與點之間的一個一對一的對應關係。

在n=2的情形,以Δx1,Δx2為鄰邊的矩形(ΔR)對應到(u1,u2)平面上的一個曲邊四邊形(ΔS),其面積ΔS關於Δx1,Δx2的線性主要部分,即面積微分是

這常用於重積分的計算中。

如果在一個連通區域內雅可比行列式處處不為零,它就處處為正或者處處為負(其正負號標誌著u-座標系的旋轉定向是否與x-座標系的一致)。如果雅可比行列式恆等於零,則函式組(u1,u2,…,un)是函式相關的,其中至少有一個函式是其餘函式的一個連續可微的函式。