復理石

[拼音]:kongzhi lilun

[外文]:control theory

研究系統的調節與控制的一般規律的科學。這裡敘述的控制理論是指20世紀50年代末至60年代初形成和發展起來的現代控制理論。它現在已成為一門獨立的學科,不僅有完整的理論體系,而且已經在諸如工程、生物、生態、社會經濟等許多領域有廣泛的應用。現代技術特別是現代空間技術的發展是形成控制理論的推動力,數學研究積累的成果為控制理論的形成和發展提供了重要工具,電子計算機的廣泛應用使控制理論的成果用於實際成為現實。當前,控制理論為實際系統的描述、分析綜合和設計、預測和決策等問題提供了系統的理論和方法。由N.維納創立的控制論(cybernetic)是一門控制和通訊的科學。由Л.C.龐特里亞金、R.貝爾曼、R.E.卡爾曼等人作出了傑出貢獻的現代控制理論則是系統科學的一個組成部分,又是形成資訊科學的一個基本方面。控制理論涉及的範圍很廣,它的方向很多。這裡就其中幾個目前被認為是主要研究內容、並在實際應用中十分廣泛的方面作一介紹。

控制理論不是直接研究現實世界中的受控物件,而是研究受控物件的模型。這裡說的“模型”是受控物件在一定程度上的數學描述,即數學模型,簡稱為控制系統。如果描寫受控物件的數學模型是線性的,則稱為線性控制系統,相仿地有非線性控制系統的稱呼。現實世界的受控物件多種多樣,例如受控剛體運動與受控彈性體振動兩者的受控機制和結果都不一樣,有隨機因素影響的受控剛體與沒有隨機因素影響的受控剛體的運動也很不一樣,因而描寫它們的數學模型的區別就很大。通常,數學模型由常微分方程或差分方程或微分 -差分方程表示的稱為集中引數系統;由隨機微分方程或隨機差分方程表示的稱為隨機控制系統;而由偏微分方程或偏微分-積分方程表示的稱為分佈引數控制系統。

線性控制系統理論

它是控制理論的一個重要分支,所研究的物件是線性控制系統,涉及的問題主要有系統描述、能控性和能觀測性、極點配置、觀測器等內容。

系統描述

線性控制系統是由下列向量微分方程和代數方程描述的。

(1)

, (2)

式中尣(t)、

u

(t)、у(t)分別是系統

的n維狀態向量、r維控制向量、m 維量測向量,記之以尣∈Rn、

u

∈Rr、у∈Rm,Rn、Rr、Rm分別表示n維、r維、m 維歐幾里得空間;

A

(t)、

B

(t)、

C

(t)分別是n×n、n×r,m×n依賴於時間的矩陣。微分方程(1)稱為系統的狀態方程,它表徵了系統狀態的動力學特徵。代數方程(2)稱為系統的量測方程,它反映了系統的內部狀態與外部觀測之間的關係。當

A

(t)=

A

B

(t)=

B

C

(t)=

C

A

B

C

全是常值矩陣時,

稱為定常系統。det[sI-

A

] 為定常系統∑的特徵多項式,det[sI-

A

]=0為它的特徵方程,特徵方程的根稱為系統的極點。這裡I為n×n單位矩陣,s表示復變數,det[·]表示矩陣[·]的行列式。狀態方程(1)的t0時刻以尣0=尣(t0)為初態的解可寫作:

矩陣φ(t,t0)叫做系統

的狀態轉移矩陣。

能控性和能觀測性

這是由卡爾曼於1960年提出來的兩個基本概念,它們刻畫了系統

的結構性質。

如果對在t0時刻任意給定的初態x0,存在某個時刻t1,t1>t0,和定義在時間區間[t0,t1]上的控制輸入函式

u

(t),使得在這個控制作用下,系統

的狀態尣(t)滿足尣(t1)=On(n維零向量),那麼就說系統

在t0時刻是完全能控的。如果該系統在t≥0的每個時刻都是完全能控的,就說它是完全能控的,簡稱系統

是能控的。系統

在t0時刻完全能控的充分必要條件是:存在某時刻t1>t0,使得矩陣

是正定的。當

是定常系統時,其能控的充分必要條件是

給定初始時刻t0,如果存在某個有限時刻t1,根據時間間隔[t0,t1]上量測輸出у(·)和控制輸入

u

(·)能夠惟一地決定系統

的初態尣(t0),則稱

在t0時刻是完全能觀測的。如果系統

在t≥0的每個時刻都是完全能觀測的,則稱它是完全能觀測的。簡稱系統

是能觀測的。系統

在t0時刻完全能觀測的充分必要條件是:存在某個時刻t1>t0,使得矩陣

是正定的。當

是定常系統時,其能觀測的充分必要條件是

極點配置

對於線性定常系統,它的一些特性(如穩定性、某些動態性質等)主要由其極點決定,因此在設計系統時,要配置極點。設系統

是定常的,如果存線上性狀態反饋控制函式

u

(t)=K尣(t),使閉環系統夶(t)=[

A

+BK]尣(t)以事先任意給定的n個複數為它的極點,則稱系統

是能任意極點配置的,或者說(

A

B

)是能任意極點配置的。這裡 K是r×n矩陣。定常系統

能任意極點配置的充分必要條件是系統完全能控。

觀測器

在系統設計中,由於系統狀態常常不能直接量測到,僅依靠狀態反饋不能設計出物理上能實現的閉環系統;而能直接量測的是系統的輸入

u

和輸出у,所以可以利用系統的量測輸出у得到系統的一種估計狀態。假如定常系統

是能觀測的,用極點配置的辦法可知,存在n×m矩陣G,使

A

-G

C

的特徵值都具有負實部。於是下列線性定常系統

(3)

具有性質

稱系統(3)為系統

的狀態觀測器。憫(t)叫做系統

的估計狀態。使用估計狀態反饋和觀測器可以得到系統

的一個動態補償器

由此得到的閉環系統

是漸近穩定的。

最優控制理論

是控制理論中最早發展的分支之一。對於控制系統,常常要求找到控制函式,在它的作用下,系統從一個狀態轉移到所希望的狀態,並且還希望控制方式是最好的。這就是最優控制問題。

問題的提法

設有非線性受控系統,它由下列非線性向量微分方程描述

(4)

這裡,控制向量

u

通常不能任意取值,它受有限制,用

u

屬於Rr中某個有限閉區域Ur來表示,即

設x0是給定的初態,xƒ是控制作用結束或控制過程結束時系統(4)的狀態,簡稱為終端狀態或末狀態。它可以是自由的,也可以是受限制的。用定義在某U上的泛函

(5)

來表示控制方式的優劣,稱為系統(4)的效能指標。其中t0、tƒ分別是控制過程的初始時刻和終止時刻(可以是事先指定的,也可以是待求的),U是定義在有限時間區間上、把系統(4)的t0時刻的狀態x0轉移到tƒ時刻的狀態xƒ、並在Ur中取值的控制函式

u

(t)的全體,稱為容許控制函式集合。尣(t)是系統(1)的相應於

u

(t)的解。ƒ0(t,尣,

u

)是t,尣,

u

的已知函式。所謂最優控制問題是指在U中尋找一個控制函式,使(5)中J[

u

(·)]取極小(或極大)。如果使J[

u

(·)]取極小(或極大)的控制函式存在,記為

u

*(t),稱它為(4)、(5)的最優控制。在

u

*(t)的作用下,系統(4)的t0時刻以x0為初態的解尣*(t)稱為(4)、(5)的最優軌線,對應於

u

*(t)、尣*(t)的效能指標值

稱為最優指標值,而t壚是最優過程終止的時刻。

極大值原理

這是1958年由Л.С.龐特里亞金等人提出的,它是最優控制滿足的必要條件。這裡就下列特殊情況來敘述,即:

(1)(4)、(5)中的ƒ及ƒ0不顯含時間t;

(2)對U中任一控制函式

u

(t),ƒ(尣,

u

(t))滿足使(4)的初值問題的解存在惟一性條件;

(3)終端狀態xƒ受形如g(xƒ)=0的約束,g(尣)是尣的連續可微分標量函式,且

定義系統(4)和效能指標(5)的哈密頓函式h(尣,ψ0,

Ψ

u

)為:

極大值原理的內容是:如果u*(t)是(4)、(5)的最優控制,

x

*(t)是 (4)、(5)的最優軌線,那麼必定存在非零函式ψ0(t)、

Ψ

(t),它們和

u

*(t)、尣*(t)一起在[t0,t壚]上滿足:

(1)

在[

]上除有限個時刻外處處成立。ψ0,

Ψ

叫做(4)、(5)的共軛變數或協態,它們滿足的微分方程叫做共軛方程。

(2)在[

]上成立

(3)當

時,有

μ為非零的待定常數。

又,如果①、②成立,則

在區間[

]上恆等於常數。

極大值原理包含了為確定

u

(t)、尣(t)、ψ0(t)、

Ψ

(t)的全部關係式,但要具體確定出這些函式並不容易。當ƒ(尣 ,

u

)是尣、

u

的線性函式(即(4)是線性定常系統)且J[

u

(·)]是工程實際中有意義的特殊效能指標時,從極大值原理可以惟一地確定出最優控制和最優軌線。

時間最優控制(快速控制)問題

(6)

(7)

(8)

式中

表示

u

的行向量。如果,①U非空;

(2)

則系統(6)的把x0轉移到尣(t壚)=On的時間最優控制

存在且惟一,並具有下列形式

式中sgn(·)表示(·)的符號函式;μT是待求的n維的行向量。

線性二次最優控制(LQ)問題

=

A

x+

B

u, (9)

尣(t0)=x0,尣(tƒ)自由, (10)

(11)

式中

Q

是n×n非負定對稱矩陣;R是r×r正定對稱矩陣,tƒ 固定。由極大值原理知(9)、(10)、(11)的最優控制

u

*(t)和最優軌線尣*(t)滿足

式中

P

*(t)是下列黎卡提矩陣微分方程終值問題

n×n非負定矩陣解,其中θn為n×n零方陣。

非線性控制理論

是現代控制理論中較晚發展起來的一個分支,60年代末發展起來,70年代以後愈來愈多地為人們所重視。與線性系統理論相似,能控性、能觀測性、穩定性、調節問題、系統解耦問題、干擾解耦問題、最優控制問題、微分對策問題等等是它研究的重要內容。不同的是,近年來,分岔、失穩與控制、混沌等問題也出現在非線性控制理論的研究領域內。非線性控制系統由下列非線性向量微分方程和非線性函式方程描述,

(12)

у=H(t,尣,u), (13)

式中t、

u

、尣、у的意義同前;ƒ、H是t、尣、

u

的非線性向量函式。(12)描述了非線性控制系統狀態x的動力學特徵,(13)表示系統狀態尣、控制輸入

u

與量測輸出у之間的非線性關係。

能控性問題

對於非線性定常控制系統

, (14)

如果存在r維向量控制函式u(t),使(14)的t0時刻以x0為初態的解尣(t,x0)在某時刻t1(t1>t0)滿足

,則稱x0是系統(14)的能控狀態;如果Rn中每個尣都是(14)的能控狀態,則稱系統(14)是完全能控的。如果Rn中某區域D內的每個尣都是(14)的能控狀態,則說系統(14)在D內是能控的。如果系統(14)在原點尣=On的某鄰域內是能控的,則稱它是區域性能控的。

設(14)中ƒ 是尣,

u

的二次連續能微分向量函式,且

如果秩條件

成立,則系統(14)是區域性能控的。當貝爾曼型偏微分方程

(15)

, (16)

在Rn中存在正定解時,非線性控制系統(14)是完全能控的,並且(14)的以

為效能指標的最優控制函式存在。這裡l(尣,

u

)是某個給定的在Rn×Ur上定義的正定標量函式,t1是某個大於零的時刻。

調節問題

對於非線性控制系統(14),如果存在依賴於狀態x的控制函式

u

(尣),使得將

u

(尣)代入(14)後得到的系統──閉環系統

(17)

是漸近穩定系統,則稱系統(14)是能調節的;如果(17)是全域性漸近穩定的,則說系統(14)是全域性能調節的;如果(17)在包含原點尣=On為內點的某區域Ω內是漸近穩定的,則稱(14)在Ω內是能調節的;如果(17)在原點尣=On的某領域內是漸近穩定的,則稱(14)是區域性能調節的。這樣的控制函式

u

(尣)叫做(14)的非線性狀態反饋,又叫做(14)的調節器。

設(14)中ƒ 是尣,

u

的二次連續能微分向量函式,且ƒ(On,Or)=On,如果秩條件

成立(

A

B

的意義同前),則非線性系統(14)是能區域性調節的。如果貝爾曼型偏微分方程

(18)

V(On)=0 (19)

在Rn中存在正定解,則非線性控制系統(14)是全域性能調節的。這裡l1(尣,

u

)是定義在Rn×Rr中的正定標量函式,且當

時,

自70年代以來,R.W.布勞克特、H.J.薩斯曼、H.赫姆斯、B.雅庫布奇烏克等人運用李代數、微分幾何等數學工具研究流形上的非線性控制系統,在系統的能控性、能觀測性、可逆性、系統的干擾解耦、最優控制等方面得到了很有啟發性的結果。同時,人們還研究了通過非線性座標變換和非線性狀態反饋將一類非線性控制系統(如雙線性系統)區域性地或全域性地變換為線性系統的問題,從而能夠利用線性系統的理論和方法進行討論。

隨機控制系統

是指帶有隨機干擾的動態系統,對它的主要研究內容有系統辨識、適應控制、狀態濾波和隨機控制。

系統辨識

對一個客觀的物理系統,為了控制它或預測它的發展,必先根據系統的輸入和輸出建立起它的數學模型,這就是系統辨識。如果用隨機差分方程來描述要辨識的動態系統:

(20)

則系統辨識的任務就是依據輸入{uk}及輸出{уk}來估計系統的階數(p,q)、系統的未知引數

以及系統噪聲εn中可能出現的未知引數。當系統的階數已知,並且不計εn中的未知引數時,動態系統(20)變成線性迴歸模型

(21)

但它不同於數理統計學中經典的線性模型,因為這裡的

是隨機的。

對θ的估計,最常用的是最小二乘法,在n+1時刻,它表達為

並且可以遞推地計算。如果εn是一個滑動平均過程εn=

其中

C

i(i=1,…,r)也要估計,那麼只要把θ和φn相應地擴大為

最小二乘辨識的公式仍可用。使θn收斂到θ的條件,收斂速度,對系統階數的估計等都是系統辨識研究的內容。

適應控制

如果不僅引數 θ未知,同時又要按一定效能指標選控制作用{

u

n}(前述的,對輸入

u

n沒有要求),這就是適應控制。最簡單的一種是適應跟蹤,即:θ 未知,並要選{

u

n}使輸出уn儘可能好地跟蹤一個已知的確定性訊號у奱。從(21)可以看出,當噪聲 εn不能預報時,對уn的最優預報是

但θ是未知引數,只知道對它的估計值θn-1,所以對уn可採用的預報值是

為了使уn與у奱的差別儘可能地小,很自然地要選un-1使

這樣選取的適應控制,可使系統在下列意義下穩定:

並且跟蹤誤差可以漸近地達到最小。當у奱取不依賴於n的常值時,適應跟蹤器通常叫做自校正調節器。

適應控制也考察比跟蹤問題更一般的指標。

狀態濾波

上面討論的是輸入輸出模型,沒有把中間狀態的發展情況刻畫出來。實際的隨機系統經常用一對隨機差分方程來描述,即狀態尣k的轉移方程

(22)

和量測方程(它可能只觀測部分狀態,而不是全部尣k)

(23)

{

ξ

k}表示系統的隨機干擾。當系統的係數矩連Фk、

B

k、Dk、

C

k、Fk已知時,狀態濾波就是用量測量(у0,…,уk)求 尣k的最小方差估計(見點估計)憫k。 憫k的遞推表示式叫卡爾曼濾波(見濾波):

它的前兩項是依狀態方程來發展的,最後一項是修正項,Kk叫增益矩陣,它可以遞推地計算。當系統的係數矩陣為常矩陣時,Kk可能趨於常矩陣,這時就得到穩態濾波器,它便於計算。

對連續時間的非線性系統,濾波方程由無窮個隨機微分方程組成,一般只能近似求解,但對條件正態過程,它是封閉的方程組。對線性系統,濾波方程叫卡爾曼-布西濾波。

隨機控制

對系統(20)、(21)或(22)、(23),設係數矩陣已知,

u

k只依賴於過去的量測,並要使某一效能指標達最小,這就是隨機控制問題。對此,解決得最完整的是二次效能指標。對系統(22)、(23),就是要使

達最小,

為非負定矩陣,E為數學期望。當{

ξ

k}為零均值的不相關隨機向量時,最優控制是

憫k就是上面得到的濾波值,lk是反饋增益,它就是系統退化為確定性系統時,二次指標下最優控制的反饋增益。這個事實叫分離原理。對連續時間系統,儘管有隨機極大值原理,但除了二次指標問題已解決外,其他方面實質性的結果不多。

分佈引數控制系統

現代控制理論的一個重要分支,研究的物件是用偏微分方程或偏微分-積分方程描述的系統。例如,描述溫度場、彈性振動、核反應堆等系統都是分佈引數系統。它同前面講的用常微分方程描述的集中引數系統不同,其狀態空間是某一個函式空間,在每一瞬間的狀態是函式空間中的一個函式。這就是說,系統在每一瞬時的狀態,不能用有窮個引數來確定,必須用無窮個引數才能確定。研究這類系統需要用泛函分析、現代偏微分方程理論等現代數學工具。

分佈引數系統研究的內容是系統的辨識、系統的濾波和系統的控制。

分佈引數系統的辨識,從某種意義上講也是一種建立模型。辨識研究的問題是一個分佈引數系統的結構已知,但這個系統有一部分是未知的,對該系統的某些物理量進行量測(這些物理量含有未知部分的資訊),依據這些量測量來確定出系統的未知部分。辨識問題在工程、技術中很多也很重要。

例如,油田在開發過程中,油的壓力變化規律用下面的偏微分方程來描述:

式中p(x,y,t)表示在t時刻座標為(x,y)點處油的壓力,h是油層的厚度,μ是石油的粘度,β是壓縮係數,qi(t)是第i口井的產量密度,(xi,yi)是第i口油井位置座標,Ω是油儲區域,Г是油層區域的邊界,φ是孔隙度,K(x,y)是滲透係數,未知的地質引數。

在打井的位置(xi,yi)(i=1,2,…,N)可以直接得到K(xi,yi),但是在油田的其他點處,不能直接得到K(x,y),通過在每口井處量測的壓力和流量來確定出滲透率K(x,y),掌握了K(x,y)的變化規律,就可以瞭解油田每口井的產量的變化。

辨識出系統的未知部分後,系統就完全確定。如果外部隨機干擾對系統有影響,還需要對系統進行濾波,以減少噪聲對系統的影響。系統經過辨識和濾波後,如果還需要選擇系統的某些引數,使其具有人們需要的某種最好的效能,這就是最優控制問題。

例如,一細長的金屬桿一端加熱,熱量在杆中的傳導服從下面的熱傳導方程:

式中Л是金屬桿長度,α(x)是熱傳導係數,u(t)是未知函式,稱為控制量。問題是要選擇一種加溫方法,即選擇一控制函式0≤u(t)≤

A

A

為常數),使得加溫到T時刻,金屬桿中的溫度分佈為所要求的溫度分佈

Q

*(x),也就是選擇一個u*(t),使得泛函

達到極小,即